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In recent years, a remarkably large number of inequalities involving the fractional g-integral operators have been investigated in
the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized Erdélyi-
Kober fractional g-integral operator due to Gaulué, whose special cases are shown to yield corresponding inequalities associated
with Kober type fractional g-integral operators. The cases of synchronous functions as well as of functions bounded by integrable
functions are considered.

1. Introduction for any x, y € [a, b], then we have (see, e.g., [2, 3])
Let us start by considering the following functional (see [1]): T(f, g, p>q) = 0. (3)
T(f.9:p.9)

The inequality in (2) is reversed if f and g are asynchronous
on [a, b]; that is,

(f@-f) (@) -g()) <0 (4)

(1)  foranyx,y € [a,b].If p(x) = q(x) forany x, y € [a, b], we get
the Chebyshev inequality (see [1]). Ostrowski [4] established

_ Jb q(x) f (x)dx J-b p(x) g (x)dx the following generalization of the Chebyshev inequality.
a a If f and g are two differentiable and synchronous func-

b b
:J q(x)dxj p(x) f(x)g(x)dx

b b
+J- p(x)dxj q(x) f(x)g(x)dx

tions on [a, b] and p is a positive integrable function on [a, b]

- (pr(x)f(x) dx) (qu(x)g(x) dx), with | f'(x)| = mand |g' (x)| > r for x € [a,b], then we have

T(f.9.p) =T (f.9.p-p) 2mrT (x—a,x—a,p) 0. (5)

where f,g: [a,b] — Raretwo integrable functions on [a, b]
and p(x) and g(x) are positive integrable functions on [a, b].
If f and g are synchronous on [a, b], that is,

(FE= f)(g()=9g(») >0, ) T(f.9.p) <mrT(x-a,x-a,p) <0. (6)

If f and g are asynchronous on [g, b], then we have
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If f and g are two differentiable functions on [a,b] with
If'(x)l < M and Ig'(x)l < Rfor x € [a,b] and p is a positive
integrable function on [a, b], then we have

T (f,9,p)| < MRT (x — a,x —a, p) < 0. (7)

Here, it is worth mentioning that the functional (1) has
attracted many researchers’ attention mainly due to diverse
applications in numerical quadrature, transform theory,
probability, and statistical problems. Among those applica-
tions, the functional (1) has also been employed to yield a
number of integral inequalities (see, e.g., [5-11]).

The study of the fractional integral and fractional g-
integral inequalities has been of great importance due to the
fundamental role in the theory of differential equations. In
recent years, a number of researchers have done deep study;,
that is, the properties, applications, and different extensions
of various fractional g-integral operators (see, e.g., [12-16]).

The purpose of this paper is to find g-calculus analogs
of some classical integral inequalities. In particular, we will
find g-generalizations of the Chebyshev integral inequalities
by using the generalized Erdélyi-Kober fractional g-integral
operator introduced by Galué [17]. The main objective of this
paper is to present some new fractional g-integral inequalities
involving the generalized Erdélyi-Kober fractional g-integral
operator. We consider the case of synchronous functions as
well as the case of functions bounded by integrable functions.
Some of the known and new results are as follows, as special
cases of our main findings. We emphasize that the results
derived in this paper are more generalized results rather
than similar published results because we established all
results by using the generalized Erdélyi-Kober fractional g-
integral operator. Our results are general in character and give
some contributions to the theory g-integral inequalities and
fractional calculus.

2. Preliminaries

In the sequel, we required the following well-known results to
establish our main results in the present paper. The g-shifted
factorial (a; q),, is defined by

; (n=0)

n—-1
(l—aqk), (neN), ®

k=0

(a:9), =

where a,g € C and it is assumed thata # g " (m € N,).
The g-shifted factorial for negative subscript is defined by

1
(a:q)_, = (1-ag)(1-ag?)- (1-aq™) )
(neN).
We also write
(@a)e=[[(1-aq") (29€C|q<1). (0
k=0
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It follows from (8), (9), and (10) that

a;
(a:9), = (W& (nez), (11)
(aq":9),
which can be extended to n = « € C as follows:
aq).,
(a:9), = % («eC; gl <1),  (12)
(aq% ),

where the principal value of g is taken.

We begin by noting that E J. Jackson was the first to
develop g-calculus in a systematic way. For 0 < g < 1, the
g-derivative of a continuous function f on [0, b] is defined by

f®-f(at)
(1-g)t
and D, f(0) = lim, _,,D, f(¢). It is noted that

d
Dyf ()= 2 f(6) = , te(0b], (13)
9

} _d
imD,f ()= 2 f ®), (14)
if f(¢) is differentiable.

The function F(t) is a g-antiderivative of f(t) if DqF(t) =
f(t). It is denoted by

[ rwa (15)

The Jackson integral of f(t) is thus defined, formally, by

j f®dgt=(1-q) tiqff (4't). (16)

j=0

which can be easily generalized as follows:
[rwagn=Y @) (a(@)-a(@").
=0

Suppose that 0 < a < b. The definite g-integral is defined
as follows:

b X .
| fode=-asYds(@b). s

0 j=0

b b a
L fyd,t= L f@ dqt—L f@®dgt. (19)

A more general version of (18) is given by
b © . . ,
J, fOdia® =35 (@) (o (a') - a(4"'8)). )
=0

The classical Gamma function I'(z) (see, e.g., [I8,
Section 1.1]) was found by Euler while he was trying to extend
the factorial n! = T'(n + 1)(n € N,) to real numbers. The g-
factorial function [#] g (n € Ny) of n! defined by

ifn=0,

1,
[nlg! = {[n]q[n— 1, [2],[1],, ifneN, @
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can be rewritten as follows:
( k+1)
—n
(1 - H k+1+n =

= l"q (n+1)

(49), (1-q)™
(@59 22)
(0<g<1).
Replacing n by a — 1 in (22), Jackson [19] defined the g-

Gamma function l"q(a) by

(% Do
(9% @)oo
The g-analogue of (f — a)” is defined by the polynomial

o b
(t=a) '_{(t—a)(t—qa)---

I, (a) := (1-9)"™" (0<g<1). (23)

(n=0)
(t - q"_la), (neN),
= "(%;q)n (n € NO) .
(24)

More generally, if y € R, then

tV]_[ —@na o (os)

(y)
—-a) (/D) q}’”"

Definition 1. Let R(p), R(u) > 0 and 57 € C. Then a general-
ized Erdélyi-Kober fractional integral I;"ﬁ "1 for a real-valued
continuous function f(¢) is defined by (see, [17])

(£} )
B+
-4 (:t)ﬂ [/ 68 = etq) b oy
q
_ 1/[; u-1 k k(;7+1) k/B )
p(1-4"")(1-q) Z (q’ q)k £(tq"")

(26)

Definition 2. A g-analogue of the Kober fractional integral
operator is given by (see, [20])

D@ = (o)
t"?‘l‘

t
-t L @ e
q

(y>0,neC; 0<g<1).
Remark 3. Tt is easy to see that
L) >0 (q%q) >0, (28)

forally > 0and k € Ny. If f : [0,00) — [0,00) is a
continuous function, then we conclude that, under the given
conditions in (26), each term in the series of generalized
Erdélyi-Kober g-integral operator is nonnegative and thus

(29)

On the same way each term in the series of Kober g-
integral operator (27) is also nonnegative and thus

{fH) =0, (30)

forally > 0andy € C.

3. Inequalities Involving a Generalized
Erdélyi-Kober Fractional g-Integral
Operator for Synchronous Functions

This section begins by presenting two inequalities involving
generalized Erdélyi-Kober g-integral operator (26) stated in
Lemmas 4 and 5 below.

Lemma 4. Let 0 < g < 1, let f and g be two continuous
and synchronous functions on [0, 00), and let u,v : [0,00) —
[0, 00) be continuous functions. Then, the following inequality
holds true:

4 ful (6) 1P fv fg} (1)

+IPP ) () I {ufa} 1)
(31)
> 1P fuf} () I {vg} (1)

+ PPV} (0 14F {ug) (1),

forallu, B> 0andn e C.

Proof. Let f and g be two continuous and synchronous
functions on [0, 00). Then, for all 7, p € (0,¢) with ¢ > 0,
we have

(f@-fP)(g@-g(p) =0, (32)

or, equivalently,

f@g@+flp)glp)zf@g(p)+f(p)g(). (33)

Now, multiplying both sides of (33) by (Bt P/
T q(y))(tﬁ - Tﬁq)(”fl)rﬁ(”“)_lu(r), integrating the resulting
inequality with respect to 7 from 0 to t, and using (26), we
get

% fufgh (t) + £ (p) g (p) IM*F u} ()
(34)
> g (p) IP*F {uf} @) + £ (p) I** fug} ).
Next, multlplymg both sides of (34) by (Bt P/
Fq(y))(t — pPg)W ) pPiD=1( ) integrating the resulting
inequality with respect to p from O to ¢, and using (26), we
are led to the desired result (31). |
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Lemma 5. Let 0 < q < 1, let f and g be two continuous
and synchronous functions on [0, 00), and let u, v : [0,00) —
[0, 00) be continuous functions. Then, the following inequality
holds true:

L} () I {ufg} (t)

+ 170 {vfg} (0 1MF {u} (8)

(35)
> 157 {vg} (6) IMF {uf} (1)
+ L7 {uf L) 1 {ugh (1),
forall y,v, 3,6 >0andn,{ € C.
Proof. Multiplying both sides of (34) by
&;;T)V) (- %) "), 36)

which remains nonnegative under the conditions in (35),
integrating the resulting inequality with respect to p from 0
to t, and using (26), we get the desired result (35). O

Theorem 6. Let 0 < g < 1, let f and g be two continuous and
synchronous functions on [0, 00), and let I,m,n : [0,00) —
[0, 00) be continuous functions. Then, the following inequality
holds true:
211F (1} (8) [104F {m} (6) I {nfg} (1)
+ 1P ) (8) 1P {mfg} (1)]
+ 2178 (m} (6) IMF i} (6) I {ifg} (1)
> [P {1 ) [124F {mf} (6) 12 {ng} (1)
P nf 0 14 fmg} 0] (37)
+ I gy (6) [129F {1} () P {ng} ()
+ 1P {nf} (6 17 {ig} ()]
+ 1P ) () [1F {1F} (0 I mg} (1)
+ 14 mf} (0 1P {igh )],
forally, 3> 0andn e C.

Proof. By setting u = m and v = nin Lemma 4, we get

1248 {m (6) 17 {nfg} (¢)

N 1—24443 {n} (t) I;”‘ o {mfq} (®)

(38)
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Since I* P{1}(t) > 0 under the given conditions, multiplying
both sides of (38) by I;””’ﬁ {1}(t), we have
IF 1y (6) [1F ) (8) I {nfg} (1)
+ IMF g} (6) 1P {mfg} (1))
> TP {1y () [124F {mf} (6) 124F {ng} (1)

+ P {nf} (0) I7F {mg} (1)]

Similarly replacing u, v by [, n and u, v by [, m, respectively,
in (31) and then multiplying both sides of the resulting
inequalities by IZ’”’ﬁ {m}(t) and Ig’“’ﬁ {n}(t) both of which are
nonnegative under the given assumptions, respectively, we
get the following inequalities:

1% ) [ 19 10 () 12 {nfo)} 0

+ 1P {n} (0) 1M {ifg} 1))

(39)

2 1P im) () [17%F {17} () 1 ng} () "
+ I nf} (1) 17 {1g} ()]
I ) (0 [129% 1 0 1 fnf 0
+ I () () I {ifg} (1)) )

2 I () () [174F 1} @) 17 {mg} ()

+ 1P {mf} (0 1F {1g} (1)) .

Finally, by adding (39), (40), and (41), side by side, we arrive
at the desired result (37). |

Theorem 7. Let 0 < g < 1, let f and g be two continuous and
synchronous functions on [0, 00), and let [,m,n : [0,00) —
[0, 00) be continuous functions. Then, the following inequality
holds true:

1P 0 0) [2077 tm) )1 {nfo} 0

+ Iy (1) 15 {mfg} (1)

+ I n (0) I {imfg} (1))
1 ) 0 4 01

+ TP () (015 ) (1))
= PP @) [ {mf} 0 137 {na} @)
+ I0F mgh () 157 {nf} 1)

+ 1 ) (0 [17F {1} 0 12 {ng} ()

+ P {ig} () 17 {nf} (1)
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# I ) 0) (1 (1) () 15 fmg) (0

+ IMP {ig} (0 15 {mf} 1)),

(42)
forall y,v,3,6 >0andn,{ € C.
Proof. Setting u = m and v = n in (35), we have
1 ) (0) I {mfg) (1)
+ 17 {nfgh (0 11 m) (0
(43)

> 157 {ng} () IF {mf} (t)
+ 1570 {nf} (0 IM*F {mg} (¢).

Multiplying both sides of (43) by I;”"ﬁ {}(t), after a little
simplification, we get

S 0[5 1 0 % i )
+ 157 nfgh (0 1 o 0]
2 10 @) [17° {ng} (0 1F {mf} ()

+ 70 {nf} (0) I {mg} (1) .

(44)

Now, by replacing u, v by I, n and u, v by I, m in (35),
respectively, and then multiplying both sides of the resulting
inequalities by Ig”"ﬁ {m}(t) and Ig”"ﬁ {n}(¢), respectively, we
get the following two inequalities:

14 {m) () [157° {n} (0) 12 {Ifg} ()
+ 157 {nfg} (&) P 11} (1)
2 1 ) ) [ 157 (g} 0 13 {11} 0
+ 157 {nf} (0 I {ig} 0], -
14} () [157° m} (0) 17 {1} (t)
+ 157 {mfa} (&) P 11} (1)
> 7P {u} (6) [157° {mg} (0) 1P {if} ()
+ I fmf} (0 I {ig} )]

Finally, we find that the inequality (42) follows by adding the
inequalities (44) and (45), side by side. O

Remark 8. It may be noted that inequalities (37) and (42) in
Theorems 6 and 7, respectively, are reversed if the functions

¢ ecial case of (42) in
is easily seen to

Remark 9. We remark further that we can present a large
number of special cases of our main inequalities in Theorems
6 and 7. Here, we give only two examples: setting # = 1 in
(37) and 3 = § = 1 in (42), we obtain interesting inequalities
involving Erdélyi-Kober fractional integral operator.

Corollary 10. Let 0 < q < 1, let f and g be two contin-
uous and synchronous functions on [0, 00), and let I,m,n :
[0,00) — [0, 00) be continuous functions. Then, the following
inequality holds true:

27 0} (0) [ 1 ) (1) 13* {nfg} )

+ I () () I {mfg} (0]

+200 (m} (0 13" ()13 {1fg} 0
= 17 ) 0) [ {mf} (0 17 {ng)} 0

+ I {nf '} (6) I {mg} 0] (46)
+ I g () [ {1} () 1" {ng} ()
+ I {nf} () 17" {ig} (1)]
I ) (0 [ 10 1) () 13" {mg} )

+ I fmf} (0 1 {ig} ()],
forally > 0andn € C.

Corollary1l. Let0 < g < 1, let f and g be two continuous and
synchronous functions on [0, 00), and let [,m,n : [0,00) —
[0, 00) be continuous functions. Then, the following inequality
holds true:

1 @ 217 i} O 1 {nf} 0
+ I {n} (1) 157 {mfg} ()
+ 17 ) () 17" {mfg} ()]
+ I {1fg} ) (124 0} O 13 (0
£ I ) (1) 15 ) ()]
> I 1 0 [13 fmf} (0 157 {ng} () “
+ I {mg} () I {nf} (1))
+ I {m) () [27 {1f} () 157 {ng) ()
+ I {lg} () 1 {nf} )]
I k@) [ {1 0 1 fmg} ()

+ 1M {igh () 157 {mf} ()],

forall y,v>0andn,( € C.
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Remark 12. If we take # = 0 and § = 1 in Theorem 6 and
n=_¢=0and =6 = 1in Theorem 7, then we obtain the
known results due to Dahmani [21].

4. Inequalities Involving a Generalized
Erdélyi-Kober Fractional g-Integral
Operator for Bounded Functions

In this section we obtain some new inequalities involving
Erdélyi-Kober fractional g-integral operator in the case where
the functions are bounded by integrable functions and are
not necessary increasing or decreasing as are the synchronous
functions.

Theorem 13. Let 0 < q < 1, let f be an integrable function
on [0,00), and let u,v : [0,00) — [0,00) be continuous
functions. Assume the following.

(H,) There exist two integrable functions ¢,,¢, on
[0, 00) such that

@, ()< f(B) <, (1), Vte[0,00). (48)

Then, fort > 0, u, § > 0, and n € C, we have

7P fug,} (6) I v f} (1)
+ 1P uf b ) 1P {vg,} (1)
2 I;W’ﬁ {ugp,} (1) IZ”"ﬁ {ver} (®)

+ P fuf} () I [} (1)

(49)

Proof. From (H,), for all 7 > 0 and p > 0, we have

(@, (™) = f @) (f(p) = 1 (p)) 2 0. (50)

Therefore,

@, (7) f(p) + 91 (p) f (1)
> (p) g, (1) + f (1) £ (p)-

(51)

Multiplying both sides of (51) by (ﬁt_ﬁ("“‘)/l“q(y))(tﬁ -

P q)("_l)‘r’3 i D-1(1), 7 € (0,¢), and integrating both sides
with respect to 7 on (0, t), we obtain

I;w»ﬁ {up,} (1) f (p) + I;“"ﬁ {uft ® ¢, (p)

2 1 {ug,} (6) @1 (p) + 17*F {uf} () f (p).

(52)

Multiplying both sides of (52) by (Bt """ /T, (u)(t* -

Byl ppur)-1 egrating both sides

49) as requested.
O
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As special cases of Theorems 13, we obtain the following
results.

Corollary 14. Let 0 < g < 1, let f be an integrable function
on [0, 00) satisfyingm < f(t) < M, for allt € [0,00), let u, v :

[0,00) — [0, 00) be continuous functions, and let m, M € R.
Then, fort > 0, u, 3 > 0, and n € C, we have

MIP“F {u) (6) 13 (v} (1)
+mIMP {uf} () IMF (v} (8)
(53)
= mMIM {u} (1) IMF (v} (1)

+ I fuf} (0 I [} (e).

Corollary 15. Let 0 < g < 1, let f be an integrable function
on [1,00), and let u,v : [0,00) — [0,00) be continuous
functions. Assume that there exists an integrable function ¢(t)
on [0,00) and a constant M > 0 such that

PO -M< f(H)<e()+M, (54)
forallt >0, u, >0, andn € C; we have

IMF {ug} (6) I (v} (2)

I {uf} () 1 (v} ()

+ MIPP (u) (6) 1P {v £} ()

+ MIPF () (6) I7F fug} (1)

+ ML ) (6 10 ) (1) (55)

> 1M fug} (1) M v (1)
F I {uf} O 1 {vf} )
+ MIPF fud () I (v} (1)

+ MIPP fuf} () IMF () (1)

Theorem 16. Let 0 < q < 1, let f be an integrable function on
[0,00), let u,v : [0,00) — [0,00) be continuous functions,
and let 0,,0, > 0 satisfying 1/0, +1/0, = 1. Suppose that (H,)
holds. Then, fort > 0, u, B > 0, and y € C, we have

eilg’“’ﬁ e 1 {ulo, - 1)} @)
1

oD O 1 (- 9)"} 0
2

+ 10 ugs} (0 11 {vp} 0 G0
1P {uf} O 12 {1} ()
2 11 fug} 01 {uf} ()

+ I fuf} (6 I {vg,} (8) .

—
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Proof. According to the well-known Young inequality [3]

— x4 lye2 >xy, Vx,y>0,
0, 0, 7)

0,,0,>0 1 + 1. 1

1°>Y2 > 91 02 ]

and setting x = ¢,(1) — f(r)and y = f(p) — @, (p), T,p 2 0,
we have

611(% @ - f@)+ 9—12<f () - 91 (0)”

2 (9@ = f @) (f (p) =91 (p))-
Multiplying both sides of (58) by

(58)

B2 (1) (1)
Ty T ()
q\H (59)
Br+1)-1
% (7p) u(@v(p),

for 7, p € (0,1), and integrating with respect to 7 and p from
0 to t, we deduce the desired result in (56). O

Corollary 17. Let 0 < g < 1, let f be an integrable function
on [0, 00) satisfyingm < f(t) < M, for allt € [0,00), letu, v :
[0,00) — [0, 00) be continuous functions, and let m, M € R.
Then, fort > 0, u, § > 0, and n € C, we have

(m+ MY*IMF fu} (8) I (v} (8)
+ 20 {uf} () 12 (v £} (0)
+ P Ly 21 ) (I fud (6) + 1P b 8) - (60)
> 2 (m+ M) (IMF {uf} (6) 1P (v} (1)

+ 1Py (0 I {v £} (1))
Theorem 18. Let 0 < g < 1, let f be an integrable function on
[0,00), let u,v : [0,00) — [0,00) be continuous functions,
and let 0,,0, > 0 satisfying 0, + 0, = 1. In addition, suppose
that (H,) holds. Then, fort > 0, u, 3 > 0, and n € C, we have
0LI1F {ug,} (£) I (v} (2)
+6,1 [y () 1P v} ()

> 0,11 {uf} (0) I (v} (2) (61)

+ 0,114 fu) (1) I {vg, } (1)

+ 1 fu(g, - )" O 1 {u(f - 00)" } ).

Proof. From the well-known Weighted AM-GM inequality
(3]

by setting x = @,(7) — f(r) and y = f(p) —@,(p), T,p > 1,
we have

0, (¢, (1) = f (1) + 6, (f (p) — 1 (p))

0 0 (63)
2 (9 (@ - f @) (f(p) -1 (p)".
Multiplying both sides of (63) by
2, ~2B(n+) ~ ~
M
! (64)
x (1) u (1) v (p),

for 7, p € (0, 1), and integrating with respect to 7 and p from
0 to t, we deduce inequality (61). O

Corollary 19. Let 0 < g < 1, let f be an integrable function
on [0, 00) satisfyingm < f(t) < M, forallt € [0,00), let u, v :
[0,00) — [0, 00) be continuous functions, and let m, M € R.
Then, fort > 0, u, § > 0, and n € C, we have

(M = m) TP fuy (6) TP o (6) + TP ul (6) TP v £} (6)

> 1P {uf} (6) IMP (v} ()
4 20F {u\/M - f} () 11F {m/ f- m} (t).

Lemma 20 (see [22]). Assume thata > 0, p > q > 0, and
p #0. Then,

(65)

a? < (%k(‘ﬁ’)/?a + %kq/l’), for any k > 0. (66)

Theorem 21. Let 0 < q < 1, let f be an integrable function
on [0,00), let u : [0,00) — [0,00) be a continuous function,
and let constants p > q > 0, p # 0. In addition, assume that
(H,) holds. Then, for anyk > 0,t > 0, u, B > 0, and nj € C, the
following two inequalities hold:

I T

< % Kla-plp I;zw»ﬁ {ugp,} () + 1% Ka/P Ig’”’ﬁ {u} (®),
(67)

(i) I;l’#xﬁ {u( f- <P1)q/P} ) + % Ka-p/p Ig,ﬂ,ﬁ {ug,} (©)

. % KPP L8 g () + l%kq/p 17 (1),
(68)

Proof. By condition (H;) and Lemma 20, for p > q > 0, p #
0, it follows that

(9@ - f ()" < %k(“’)”’ (¢ (- f (D) + f%kqu,
(69)
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for any k > 0. Multiplying both sides of (69) by (8t P/
l"q(y))(tﬁ - Tﬁq)("_l)rﬁ(”“)_lu(r), 7 € (0,t), and integrating
the resulting identity with respect to 7 from 0 to ¢, one has
inequality (7). Inequality (i7) is proved by setting a = f(7) —
¢, (1) in Lemma 20. O
Corollary 22. Let 0 < q < 1, let f be an integrable function
on [0, 00) satisfyingm < f(t) < M, forallt € [0,00), let u, v :

[0,00) — [0, 00) be continuous functions, and let m, M € R.
Then, fort > 0, u, 5 > 0, and n € C, we have

) 207 {un[M = £} @ + 179 fuf} )

< (M + 1) I fu) (t),

(ii) 21;7”‘"’ {u\/ f- m} )+ (m-1) IZ’”’B {u} (©)

< I fuf} (@),

(70)

Theorem 23. Let 0 < q < 1, let f and g be two integrable
functions on [0,00), and let u,v : [0,00) — [0,00) be
continuous functions. Suppose that (H,) holds and moreover
we assume the following.

(H,) There exist v, and v, integrable functions on
[0, 00) such that

yt)<g)<y,(t) Vtel0,00). (71)

Then, fort > 0, u, 3 > 0, and y € C, the following inequalities
hold:

(@) I {ug,} () I {vg} (1)
F I {uf} () 1 (o} ()
> 11 {ugy} () 1P {wy} @)
+ 1P {uf} 0 I fvg} @),
(i) I fuyy} () 1P {vf} )

+ I;”“’B {ug} (t) Ig’”’ﬁ {vo,} (1)

= I;””’ﬁ {uya} () I;””’ﬁ {ve.} ()
+ 7P fugh (6) P {v £} (1),
(i) IM*F Jug,} (6) IMF vy} (1)

+ 1P {uf} (0 I fugh (¢)
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(@v) 1P {ug} (1) I1F fvyn} (1)
+ I fuf} () IMF vg} ()
> 1M fug,} (0 11 fvg} (1)
+ PP {uf} () I {1 (8)
(72)

Proof. To prove (i), from (H,) and (H,), we have for t €
[0, 00) that

(9, () = £ () (g (p) -1 (p)) 2 0. (73)
Therefore,
¢, (M g(p) +v1(p) f (D) 2y, (p) 9 (7)
+f(®g(p).

Multiplying both sides of (74) by (Bt P /T, (w)(t* -

Tﬁq)(”_l)rﬁ(”“)_lu(r), 7 € (0,1), and integrating both sides
with respect to 7 on (0, t), we obtain

9 (p) 1" fug,} (1) + vy (p) 1P {uf} (0
>y (p) I {ugy} (6) + g (p) IT*F {uf} (1)

Multiplying both sides of (75) by (Bt /T (w)(t* -

pP) Y pPrtD=1y(p) b € (0,t), and integrating both sides
with respect to p on (0, t), we get the desired inequality (7).
To prove (ii)-(iv), we use the following inequalities:

(i) (v, (1) =g @) (f (p) =91 (p)) 20,
(iii) (¢, (1) = £ (1)) (g(p) —w2(p)) <0,  (76)
(i) (p (1) = f (D) (g(p)—v:(p)) 0.

(75)

O

Theorem 24. Let f and g be two integrable functions on
[0,00), let u,v : [0,00) — [0,00) be continuous functions,
and let 0,,0, > 0 satisfying 1/0, + 1/0, = 1. Suppose that
(H,) and (H,) hold. Then, fort > 0, u, 5 > 0, and n € C, the
following inequalities hold:

) g 13" {ulg = N} O 1 11 0

+ eizg%f‘ {v(ys - 9"} O 1 u 1)
2

+ 1 fugy} (01 {vg} 0
10 fuf ) (0 17 o} )
= 11 fugs} (0 1" (v} ()

+ I fuf} () IF {vgh (1),
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(i) Gil 148 u(g, - o 1 fu(y, - 9™} 0
© g futva -9 O 117 ol - 1) @

> I fu (g, - £) (v, - )} )
X Iw’ﬁ v, -9) (9 - N} ®),

(i) 1’“‘“{ (f - o)} O 1P v} 1)

e oo ne

I {uf} O 1 g} (0

+ I {ug, } (6) 1M {vg} (t)

> 17 {uf} () 12" vg) (1)

+ I;W’ﬁ {up,} (1) I;W’ﬁ {0,

) g1 {ulr 90"} @ 17 {u(g —w)"}
1
t o i ulg )" O 1 - 90" @

> P fu(f - 9) (g -v)} O

x I {v (g =) (f - @)} ®).
(77)

Proof. The inequalities (i)-(iv) can be proved by choosing the
parameters in the Young inequality [3]:

) x=p, (D) -f(@), y=v,(p)-g(p),
(i) x= (¢, (1) = £ (D) (y2(p) — g (p))>
y=W, (@) -9@)(p,(p) - f(p))>

Gi)) x=f(@) -9, (),  y=4g(p)-vi(p), %)
(i) x=(f(©) -9, (@) (g(p) —v1 (p)>
y=(g@ -y, @) (f(p) - (p)).
O

Theorem 25. Let f and g be two integrable functions on
[0,00), let u,v : [0,00) — [0,00) be continuous functions,
and let 0,0, > 0 satisfying 0, + 0, = 1. Suppose that (H,) and
(H,) hold. Then, fort > 0, u, 3 > 0, and n € C, the following
inequalities hold:

(@) 6,11 Jug,} () IMF (v} (1)

+ 0,11 [y, } (6) I u} (1)

> 0,11 {uf} (£) P (v} (¢)

(i) 0,7 fug,} () IMF {vy, } (1)
+ 0,1 {uf} (1) PP {vg} (1)
+ 0,11 fuy} (6) 11 {vgp,} ()
+ 0,17 {ugh (1) PP {v £} (1
> 0,1"F {ug,} (1) I {vg} (1)
+0,IF {uf} () I {vyn} ()
+ 0,1 {uy,} (6 1P fuf} (t)

+0,17F {ug} (6) IM*F {vg,} (¢)
+ 18 fu(g, - )" 9)92}

x I8 Lo(y, - ) (9, - 1)} (¢
(i) 6,7F fuf} (t) M (v} (t)

(t)

+ 0,17 {vgh (6) I fu} (1)
> 0,1 {ug, } (t) I (v} (1)
+ 0,1 foy } (0 I {u) (1)
s fu(f - o)} O 1 (g - )} ),
(iv) 0,17 {uf} (0) 11 {vg} (0
+ 0,11 fug } (6) 11 vy } ()
+ 0,17 {ugh (1) PP {v £} (1)
+ 0,1 {uy } () 1M {vg,} (1)
> 0,11 {uf} () 1" (v} (0
+ 0,17 {ug, } (1) 1M {vg} (1)
+ 0,17 {ugh (1) I {vg, } (1)
+ 0,104 fuy } (0 TP v} ()
0)"(g-v)"}
<11 (g -y (F - 0)"} ).

+ I{’J”"ﬁ {u(

(79)

Proof. The inequalities (i)-(iv) can be proved by choosing the
parameters in the Weighted AM-GM [3]:

) x=9,0-f@, y=v(p)-9g(p),
(ii) x=(p, (1) = F (D) (v (p) -9 (p))>
Y= @) -g@)(e:(p) - f(p)).

www.manharaa.com
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(iii) x=f () -9, (1),  y=g(p)-wi (p)>
(@) x=(f (@) -9, () (9(p) -1 (p))

y=(g@ -y @) (f(p) -1 (p))
(80)
O
Theorem 26. Let f and g be two integrable functions on
[0,00), let u,v : [0,00) — [0,00) be continuous functions,
and let constants p > q > 0, p # 0. Assume that (H,) and

(H,) hold. Then, forany k > 0,t > 0, u, 3 > 0, and nj € C, the
following inequalities hold:

) 124 fulp, - Y7 (> - 9"}
+ %k(q_p /e Ig’”’ﬁ {ug,g} ()
+ %k(qu Ve Ig’”’ﬁ {ufya} ®
< %k(q"’”" 174 (g} ()
Kla-pip I;v,u,ﬁ {ufg} )

.4
P
P

I_) qkq/PIg%ﬁ @),

u(ep, - f)q/P} (t) I;W’ﬁ {V(V/z - g)q/P} (t)

+ TR fug, ) (1) 17 {vg) ()

N
(i) Iq

——

~

. 1% RGO Ig,u,ﬁ {uf} @®) I;w,ﬁ {w,} ()
< % ARG I;w,ﬁ {ug,} () 1;1,1443 (v} (6)
+ %k“i‘f’)/f’z;“"ﬁ fuf} 0 I {vg} (1) g (1)
+ P

SR 0 13 ) 0,

(i) I {u(f - )" (g - y2)""} ()

. 1% Ka-pip I;w,ﬁ {uy, f} @)

9,4 s
" ; Kla-»ir 1;1 P {ug, g} ()

< % ARG I;w)ﬁ {ufg} ()

4 % Ka-plp I;w,ﬁ {ug,y,} ()
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@) I u(f - o)} 0 12 {n(g - )"} @)

+ dplapip I;mﬁ {uf} @ 1;7%13 {vy } (1)

1
p
N % a-p)ip 1;1,#43 {ug,} (1) Ig’”’ﬁ {vg} ®)

<

KPP uf} () 1 {ug) ()

N % app IZ%ﬁ {ug,} () Ig’”’ﬁ v} @

" I%kq/f’lg’”’ﬁ {1} () I (0} 1)
(81)

Proof. The inequalities (i)-(iv) can be proved by choosing the
parameters in Lemma 20:

) a=(p, (M- f@)(y, (1) -9g(1)),

(i) a= (¢, (1)~ f (D) (v>(p) -9 (p))>
(i) a=(f () - (M) (g(0) -y, (1),
() a=(f(@ -9 (0)(g(p)~v1(p))-

(82)

5. Concluding Remark

We conclude our present investigation with the remark that
the results derived in this paper are general in character and
give some contributions to the theory of g-integral inequal-
ities and fractional calculus. Moreover, they are expected
to find some applications for establishing uniqueness of
solutions in fractional boundary value problems and in
fractional partial differential equations. In last, use of the
generalized Erdélyi-Kober fractional g-integral operator due
to Gaulué is the advantage of our results because after setting
suitable parameter values in our main results, we get known
results established by number of authors.
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